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Information theoretic parameters are described which measure the asymmetry 
of polyhedra based on partitions of their vertices, faces, and edges into orbits 
under action of their symmetry point groups. Such asymmetry parameters are 
all zero only for the five regular polyhedra and are all unity for polyhedra 
having no symmetry at all, i.e. belonging to the C1 symmetry point group. In 
all other cases such asymmetry parameters have values between zero and 
unity. Values for such asymmetry parameters a re  given for all topologically 
distinct polyhedra having five, six, and seven vertices; all topologically distinct 
eight-vertex polyhedra having at least six symmetry elements; and selected 
polyhedra having from nine to twelve vertices. Effects of polyhedral distortions 
on these asymmetry parameters are examined for the tetrahedron, trigonal 
bipyramid, square pyramid, and octahedron. Such information theoretic asym- 
metry parameters can be used to order site partitions which are incomparable 
by the chirality algebra methods of Ruch and co-workers. 

Key words: Information theory - -  Polyhedra - -  Symmetry - -  Asymmetry 
parameters 

1. Introduction 

Symmetry is an important property of chemically significant polyhedra. In this 
connection a variety of descriptors can be used to define the symmetry of 
polyhedra. The most conventional polyhedral symmetry descriptor uses the sym- 
metry point group [2]. Using this approach an increase in the symmetry of a 
polyhedron leads to an increase in the size of its point group. A related symmetry 
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descriptor uses the cycle index polynomial for all of the symmetry operations of 
the polyhedron in question [3]. An increase in symmetry leads to more terms in 
the cycle index polynomial. 

Such symmetry descriptors may be regarded as additive since an increase in 
symmetry leads to an increase in the size of the symmetry descriptor, i.e. the 
point group or the cycle index polynomial. Other alternative symmetry descriptors 
are subtractive. Chirality algebra [4-6] provides an example of a subtractive 
symmetry descriptor since an increase in the symmetry of the system decreases 
the number of chiral site partitions. 

This paper discusses a new type of subtractive symmetry descriptor also based 
on site partitions but having information theory [7, 8] rather than group rep- 
resentation theory [4, 9] as its mathematical basis. This approach represents an 
extension of work of Bonchev, Kamenski, and Kamenska [8] on the information 
content of chemical structures. The approach in this paperodefines information 
theoretical asyrnmetryparameters for the vertices, edges, and faces of a polyhedron 
such that these parameters are all zero for the five regular polyhedra [10] and all 
unity for polyhedra having no symmetry, i.e. polyhedra having C1 point group 
symmetry. These asymmetry parameters are functions solely of the site partitions 
of the vertices, the centers of the faces ("faces"), and the midpoints of the edges 
("edges") of the polyhedron in question and in this sense have a similar genesis 
as the chirality functions [4, 5] arising from chirality algebra. However, the fact 
that the asymmetry parameters are always fractions ranging from zero for systems 
in which all sites of a given type (i.e. vertices, faces, or edges) are equivalent (i.e. 
in the same orbit of the symmetry point group) to unity in systems having no 
symmetry (i.e. each site of a given type is its own orbit in the C~ point group) 
facilitates comparison of the symmetries of systems having radically different 
numbers of sites or symmetry point groups of different structures. 

This paper defines such information theoretic asymmetry parameters for poly- 
hedra. The values of these parameters are then examined for all polyhedra having 
seven or less vertices, all eight-vertex polyhedra having at least six symmetry 
elements, and selected polyhedra of chemical significance having nine through 
twelve vertices. Finally, this paper examines effects on such asymmetry parameters 
upon distortion of polyhedra of particular chemical importance: namely the 
tetrahedron, trigonal bipyramid, square pyramid, and octahedron. 

2. Method 

The polyhedron asymmetry parameters discussed in this paper are functions 
solely of the site partitions, where the sites are the vertices, the midpoints of the 
edges, or the midpoints of the faces. The site partitions are described by symbols 
of the type (abl,ag . . . .  a~-) where a~ and bi are small positive integers and ai -> a~+t 
(1-< i -  < n). In this symbol for the site partition there are bi sets of a~ identical 
sites. The a~ identical sites correspond to an orbit of the symmetry group. Thus, 
if all of the N sites of a given type (i.e. vertices, faces, or edges) are equivalent, 
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the site partition is represented as (N1), abbreviated further as (N).  Conversely, 
if all of the N sites of a given type are different (i.e. if there is no symmetry 
whatsoever), the site partition is represented as (1N). For example, the site 
partitions of a trigonal bipyramid are (32) for the five vertices (i.e. three equatorial 
and two axial), (6) for the six (equivalent) faces, and (63) for the nine edges (i.e. 
six axial-equatorial and three equatorial-equatorial edges). 

The information content of a site partition can be obtained from the following 
basic equation of Shannon [7]: 

[ = - ~ p, lg p,. (1) 
i=1 

In Eq. (1), n is the number of orbits, Pl is the probability of the site being in 
orbit i, lg is a logarithm to the base 2, and [ is the average information content 
per site. The probability p~ is obtained from the quotient Nil  N where N is the 
total number of sites and N~ is the number of sites in orbit i. For example, for 
the vertices of a trigonal bipyramid which correspond to a site partition (32), 

I =  - (3 /5 )  lg ( 3 /5 ) -  (2/5) lg (2/5)= 0.4422+0.5288 = 0.9710. (2) 

Note that if all of the sites are equivalent, there is only one orbit, the probability 
of being in the orbit is 1 so that the average information content per site is zero, 
i.e. [ = - l g  1 = 0. 

The maximum value of [ for a collection of N sites occurs when all sites are 
different, i.e. the system has no symmetry so that each site is its own orbit. For 
such a fully asymmetric system 

_To= - lg  ( l / N ) .  (3) 

In Eq. (3) fo represents the average information content per site for a fully 
asymmetric system. We can now define an asymmetry parameter As for N sites 
of type s (i.e. vertices, faces, or edges) by the quotient 

As = [ / [o  (4) 

where [ and iF ~ are defined as in Eqs. (1) and (3), respectively. For the vertices 
of a trigonal bipyramid with the site partition (32) 

- (3 /5)  lg ( 3 / 5 ) - ( 2 / 5 ) l g  (2/5) 0.9710 
Av(32) - - - = 0 . 4 1 8 2 .  (5) 

- l g  (1/5) 2.3221 

Note that these asymmetry parameters depends only upon the site partitions. 
Furthermore, for N sites the asymmetry parameter for the fully symmetric site 
partition (N)  is 0, that for the fully asymmetric site partition (1 N) is 1, and the 
asymmetry parameters for other site partitions fall between 0 and 1. 

A further feature of the asymmetry parameter A~ defined in Eq. (4) is that for a 
given number of sites N, As can only have a finite number of discrete values, 
since there are only a relatively small number of ways for partitioning an integer 
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N into a sum of smaller integers, i.e., 5, 7, 11, 14, and 22 such partitions for 
N = 4, 5, 6, 7, and 8, respectively. For this reason, only in a small number of 
exceptional cases other than the fully symmetric A(N) = 0 and fully asymmetric 
A(1N) = 1 can asymmetry parameters be matched for partitions of different 
numbers of  sites. These relatively rare matching of asymmetry parameters for 
small values of N include A(22) = A(422)= 0.5 and A(212) = A(2312) = 0.75. 

A feature of the chirality algebra of Ruch and co-workers [4, 5] is the recognition 
of some sets of different partitions of n sites as incomparable. This occurs when 
two different partitions of the same number of sites are ordered differently by 
different, equaly valid, procedures. The simplest such pairs are the (32) and (412) 
partitions and the (23 ) and (313 ) partitions of six sites. The information theoretic 
asymmetry parameters for such incomparable site partitions may be distinct 
therby providing a basis for ordering site partitions which are incomparable by 
the methods of Ruch and co-workers [4, 5]. 

3. Results 

The asymmetry parameters depend only on the site partitions and are given below 
for all possible partitions of four to eight sites: 
A) Four Sites: A(4)=0 ;  A(31)=0.4057; A(22)=0.5; A(212)=0.75; A(14)=l .  
B) Five Sites. A(5)=0 ;  A(41)=0.3109; A(32)=0.4182; A(312)=0.5905; 
a(ZZl) =0.6555; a(213) =0.8278; A(15) = 1. 
C) Six Sites: A(6)=0 ;  A(51)=0.2515; A(42)=0.3552; A(32)=0.3868; 
A(412)=0.4842; A(321)----0.5645; A(23)=0.6132; A(313)=0.6935; A(2212) = 
0.7421; A(214) = 0.8711; A(16) = 1. 
D) Seven Sites: A(7)=0;  A(61)=0.2113; A(52)=0.3075; A(43)=0.3510; 
A(512)=0.4093; A(421)=0.4911; A(321)=0.5161; A(322)=0.5322; A(413) = 
0.5929; A(3212) = 0.6563; A(314) = 0.7580; A(2213) = 0.7965 ; A(215) = 0.8378; 
a(17) = 1. 
E) Eight Sites; A(8)=0 ;  A(71)=0.1812; A(62)=0.2704; A(53)=0.3182; 
A(42) = 0.3333; A(612) = 0.3537; A(521) = 0.4329; A(431) = 0.4686; A(422) = 0.5; 
a(513) = 0.5163 ; A(322) = 0.5205; A(4212) = 0.5833 ; A(3212) = 0.6038; A(3221) = 
0.6352; A(414)=A(24)=0.6667; A(3213)=0.7186; A(2312)--0.75; A(315) = 
0.8019; A(2214)=0.8333; A(216) =0.9617; A(18) = 1. 
Table 1 lists the asymmetry parameters for all topologically distinct polyhedra 
having five, six and seven vertices. The properties of these polyhedra are taken 
from Federico's extensive tabulation of polyhedra having from four to eight faces 
[11] by conversion of the polyhedra to their duals [12, 13]; the number of the 
dual of the polyhedron in question in Federico's table [11] is given to facilitate 
comparison. The polyhedra in Table 1 are ordered by increasing values of Ae, 
the edge asymmetry parameters, since among the three asymmetry parameters 
Av, As, and As, the parameter Ae has the maximum number of possible valfles 
because a given polyhedron has more edges than either vertices or faces by Euler's 
theorem, i.e. 

v + f  = e -  2. (6)  
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This, coupled with the intermediate dimensionality of edges (1) relative to vertices 
(0) and faces (2), suggests that Ae might be a better measure of polyhedral 
asymmetry than either Ao or Ap 

The asymmetry parameters of polyhedra having the common symmetry point 
groups fall into characteristic ranges. Thus the Ae values for polyhedra having 
the order 2 point groups Cs and (72 fall in the range 0.7 to 0.8 whereas those 
having the order 4 point group C2~ fall in the range 0.5 to 0.65. Furthermore, 
since the asymmetry parameters depend only on site partitions, all three asym- 
metry parameters will be identical for two or more polyhedra having identical 
site partitions for their vertices, faces, and edges. Such a set of polyhedra can be 
called isoentropic because of the relationship of information content to entropy 
[14]. Examples of isoentropic seven-vertex polyhedra include the seven seven- 
vertex polyhedra having no symmetry; a set of three seven-vertex polyhedra with 
A~ = 0.7964, Af = 0.7897, and Ae = 0.7749; a set of three seven-vertex polyhedra 
with Ao = 0.7964, Af = 0.7500, and A~ = 0.7921; and four pairs of isoentropic 
seven-vertex polyhedra having A~ values of 0.5578, 0.5943, 0.7506, and 0.7749 
(Table 1). For a pair of dual [12, 13] polyhedra P and P' (e.g. Federico dual 
numbers #35 and #38 in Table 1) A e = A;, Av = A}, and Ay = A'~ in accord with 
the preservation of the symmetry of a polyhedron while constructing its dual. 

According to Federico [11] the total number of combinatorically distinct eight- 
vertex polyhedra is 257, which is an intractable number for detailed study. 
However, if we exclude from consideration the large numbers of relatively 
uninteresting eight-vertex polyhedra having the relatively low symmetry point 
groups C2~, C2, Cs, and C1, the remaining number of eight-vertex polyhedra 
drops drastically to 14, a manageable number but still including the eight-vertex 
polyhedra of greatest chemical interest [15]. Table 2 lists the asymmetry para- 
meters of some nine- to twelve-vertex polyhedra that have arisen in chemical 
contexts. 

A given polyhedron has three asymmetry parameters A~ Af, and A~ corresponding 
to the site partitions for the vertices, faces, and edges, respectively. All three of 
these parameters are zero only for the five regular polyhedra [10], namely the 
tetrahedron, octahedron (Table 1), cube (Table 2), icosahedron (Table 3), and 
regular (pentagonal) dodecahedron. Bipyramids, prisms, antiprisms, and the dual 
of the truncated tetrahedron (Table 2) have a single zero asymmetry parameter 
and the semiregular cuboctahedron [16] has zero values for A~ and Ae but not A~ 

Asymmetry parameters can also be used to follow the progress of distortion of 
relatively symmetrical polyhedra when symmetry elements are removed. Table 4 
illustrates the effects of distortions on asymmetry parameters for four chemically 
significant polyhedra, namely the tetrahedron, trigonal bipyramid, square 
pyramid, and octahedron. Several different distortion pathways of the octahedron 
are examined in Table 4 depending on which symmetry elements (e.g. the (23 
axis or a o- h symmetry plane) are destroyed first in the distortion process. Note 
that as symmetry elements are removed in these distortion processes, the values 
of the asymmetry parameters increase in accord with expectations. 
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